第7个折纸公理
本文写到这里,大家或许以为故事就结束了吧。 10 年以后也就是 2001 年,事情又有了转折: 数学家羽鳥公士郎(Koshiro Hatori)发现,上述的 6 个折纸公理并不是完整的。 他给出了折纸的第 7 个定理。从形式上看,第 7 公理与已有的公理如出一辙,并不出人意料,很难想象这个公理整整十年里竟然一直没被发现。继续阅读之前,大家不妨先自己想想,这个缺失的操作是什么。这段历史背景无疑让它成为了一个非常有趣的思考题。
补充的公理是:
7. 已知点 A 和 a 、 b 两直线,可以沿着一条垂直于 b 的折痕,把 A 折到 a 上。
后来,这 7 条公理就合称为了藤田-羽鳥公理(Huzita–Hatori 公理),你可以在 维基百科 上读到这个条目。在 2003 年的一篇文章中,世界顶级折纸 艺术家 罗伯特•朗 (Robert J. Lang )对这些公理进行了一番整理和分析,证明了这 7 条公理已经包含折纸几何中的全部操作了。
看,艺术家都是先搞数学的!
罗伯特•朗注意到,上述 7 项基本操作其实是由一些更基本的操作要素组合而成的,例如“把已知点折到已知线上”、“折痕经过已知点”等等。说得更贴切一些,这些更加基本的操作要素其实是对折痕的“限制条件”。在平面直角坐标系中,折痕完全由斜率和截距确定,它等价于一个包含两个变量的方程。不同的折叠要素对折痕的限制力是不同的,例如“把已知点折到已知点上”就同时要求 x1' = x2 并且 y1' = y2 ,可以建立出两个等量关系,一下子就把折痕的两个变量都限制住了。而“折痕经过已知点”则只能列出一个方程,只能确定一个变量(形式上通常表示为与另一个变量的关系),把折痕的活动范围限制在一个维度里。
不难总结出,基本的折叠限制要素共有 5 个:
(1) 把已知点折到已知点上,确定 2 个变量
(2) 把已知点折到已知线上,确定 1 个变量
(3) 把已知线折到已知线上,确定 2 个变量
(4) 把已知线折到自身上,确定 1 个变量
(5) 折痕经过已知点,确定 1 个变量
而折痕本身有 2 个待确定的变量,因此符合要求的折纸操作只有这么几种: (1) , (2) + (2) , (3) , (4) + (4) , (5) + (5) , (2)+(4) , (2) + (5) , (4) + (5) 。但是,这里面有一种组合需要排除掉: (4) + (4) 。在绝大多数情况下, (4) + (4) 实际上都是不可能实现的。如果给出的两条直线不平行,我们无法折叠纸张使得它们都与自身重合,因为没有同时垂直于它们的直线。
另外 7 种则正好对应了前面 7 个公理,既无重合,又无遗漏。折纸几何至此便有了一套完整的公理。
不过,折纸的学问远远没有到此结束。如果允许单次操作同时包含多处折叠,折纸公理将会更复杂,更强大。折纸的极限究竟在哪里,这无疑是一个非常激动人心的话题。
在这里,简单展示几个折纸几何学的例子,分别是三等分角、黄金比例和正六边形。图片由果壳美术设计师 V晶V 制作
相关阅读:
“叹为观纸”第一期:现代折纸介绍
折纸戢戢然,算法苏苏然
折纸又见折纸